武汉文都欢迎您!
  • 群名称:2020文都考研交流2群
    群   号:174073601

400-099-1860

全国统一24小时咨询服务热线

2017考研数学:无穷级数的敛散性判断方法(二)

来源:武汉文都 更新时间:2019-08-06 16:28:02

  无穷级数是考研数学一和数学三的重要考点之一,关于无穷级数有两个基本问题,其一是敛散性的判断,其二是求和。无穷级数中有一类常见的级数,就是正负项相间的级数,即交错级数,交错级数的敛散性判断有多种方法,包括:莱布尼茨判别法、绝对值判别法以及部分和判别法,下面我们对这些方面及其典型题型做些分析总结,供各位同学参考。

  一、交错级数的敛散性判别法

  对于交错级数的敛散性判别,使用得较多的是莱布尼茨判别法。

blob.png

blob.png

blob.png

blob.png

  从上面的例题我们看到,并非所有的交错级数都是收敛的,即使级数的通项趋于零也不一定收敛,但如果通项趋于零且通项是单调的,则级数是收敛的;有些级数表面上看不是交错级数,但经过恒等变形后却是交错级数,这时就可以利用上面方法进行判断;如果一个交错级数不满足莱布尼茨条件,但每项取绝对值后的级数是收敛的,即绝对收敛,则原交错级数是收敛的。

>>扫一扫,考研资讯随身走!

武汉文都微信号.jpg

免责声明:本站所提供的内容均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。