全国统一24小时咨询服务热线
判断函数的连续性及间断点的分类(一般考客观题);
导数定义的应用(客观题和解答题都可能考);
各类函数(复合函数、幂指函数、隐函数、参数方程、变上限函数)的求导(客观题和解答题都可能考);
利用7个中值定理(零点定理、介值定理、罗尔定理、拉格朗日定理、柯西中值定理、泰勒定理、积分中值定理)进行证明等式(考证明题);
利用函数单调性和最值、中值定理证明不等式(考证明题);
利用函数性态讨论方程的根的个数问题(考解答题);
判断函数的极值、拐点(客观题和解答题都可能考);
求曲线的渐近线(一般考客观题);
不定积分和原函数的概念的理解(一般考客观题);
不定积分的计算(一般考解答题);
定积分的计算和定积分性质的应用(客观题和解答题都可能考);
定积分的几何应用和物理应用的考查(一般考解答题,有时会和其他知识结合考综合题);
反常积分的计算和判断敛散性(一般考客观题);
求满足条件的平面方程或直线方程(客观题和解答题都可能考);
多元函数可偏导、可微、连续之间的关系(客观题和解答题都可能考);
多元函数偏导数和全微分的计算(客观题和解答题都可能考);
二重积分的计算,此题型是数二和数三同学每年必考的一道大题(考解答题);
二重积分交换积分次序及改变坐标系方法的应用(客观题和解答题都可能考);
三重积分的计算(客观题或是会和曲面积分的计算一起考);
曲线积分的计算(客观题和解答题都可能考);
曲面积分的计算(客观题和解答题都可能考,考解答题的概率大一些);
常数项级数敛散性的判别(考选择题);
幂级数收敛半径、收敛域的求法(客观题和解答题都可能考);
求幂级数的和函数(考解答题);
将函数展成幂级数的形式(考解答题);
将函数展成傅立叶级数(客观题和解答题都可能考);
一阶微分方程的求解(客观题和解答题都可能出现);
二阶常系数线性微分方程解的结构和性质(选择题);
二阶常系数线性微分方程特解及通解的求法(客观题和解答题都可能考到);
微分方程和变上限函数、导数应用等的结合(考解答题)。
以上就是“2021考研数学:高等数学高频常考题型汇总”的相关内容,同学们有更多关于考研备考相关的问题,可以在线咨询老师!武汉文都考研为大家及时发布有料、有效且干货满满的备考资料及新鲜考研资讯,更多精彩内容敬请关注武汉文都考研官网【wh.wendu.com】,持续了解更多考研相关内容。研途漫漫,名校之约,文都考研,今年我们一研为定,明年定为研一!
免责声明:本站所提供的内容均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。