全国统一24小时咨询服务热线
函数是高等数学的研究对象,函数的特性包括分析特性和几何特性,分析特性包括函数的极限、函数的连续与间断、函数的导数、函数的积分等,几何特性包括曲线的图形、曲线的切线和法线、曲线的凹凸性、曲线所围成的面积等,其中曲线的凹凸性是反映曲线的弯曲方向的,如果曲线向下弯曲,则称之为凸,如果曲线向上弯曲,则称之为凹,如果曲线在某点的弯曲方向发生改变,则称该点为拐点,拐点是考研数学的一点考点,如何判别曲线的拐点,下面武汉文都考研数学老师对此做些分析总结,供各位2017考研的考生复习参考。
一、拐点的定义
在前面的分析和例题中,我们介绍了曲线拐点的三种判别方法,一种是根据几何图形的弯曲方向是否改变来进行判别,一种是根据函数的二阶导数的符号在某点左右是否改变来判别,第三种方法是根据三阶导数在某点不为零来判别,这三种方法用得较多的是第二种,但在某些情况下用另外两种可能更方便,同学们在实际解题时要灵活运用。
免责声明:本站所提供的内容均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除。